设(G,*)是群,如果对于G中任意元素a和b,都有(a*b)^2=a^2*b^2,证明(G,*)是可交换群

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/28 12:50:19
设(G,*)是群,如果对于G中任意元素a和b,都有(a*b)^2=a^2*b^2,证明(G,*)是可交换群

设(G,*)是群,如果对于G中任意元素a和b,都有(a*b)^2=a^2*b^2,证明(G,*)是可交换群
设(G,*)是群,如果对于G中任意元素a和b,都有(a*b)^2=a^2*b^2,证明(G,*)是可交换群

设(G,*)是群,如果对于G中任意元素a和b,都有(a*b)^2=a^2*b^2,证明(G,*)是可交换群
对任意G中的元素a和b,由(a*b)^2=a^2*b^2,即
abab=aabb,
a^-1abab b^-1= a^-1aabb b^-1
即得ba= ab
故(G,*)是可交换群

设(G,*)是群,如果对于G中任意元素a和b,都有(a*b)^2=a^2*b^2,证明(G,*)是可交换群 14.设 (G,*)是群,A是G的子集,若对于A中任意元素a和b,都有a*(b的逆元)属于A,证明 (A,*)是 (G,*)的子群. 设群G中只有一个元素a的阶是2,证明:ax=xa,其中任意x属于G 是否存在幂集与自然数集等势的集合?考虑一个交换群G,对于G中任意元素a有a*a=e,e为单位元素,那么猜想:G的基K的幂集与G等势.比如:K={a,b,c},G={e,a,b,c,ab,ac,bc,abc},card(K)=3,card(G)=8=2的3次方.如果这 证明:设是一个群,则对于任意a,b∈G,必存在惟一的x∈G使得a•x=b. 抽象代数,群的定义:设G是一个非空集合,.是它的一个代数运算,如果满足以下条件:Ⅰ.结合律成立,即对G中任意元素a、b、c都有(a o b) o C = a o (b o c);Ⅱ.Ⅲ.群的封闭性隐含在哪?是“.是它的一 抽象代数中的一个定理:群G的全体中心元素作成的集合C(G)是G的一个子群.证:因为e∈C(G), 故C(G)非空,又设a,b∈C(G),则对G中任意元素x都有ax=xa, bx=xb,从而又有b^(-1) x = x b^(-1), //////////////////不 设(G,*)是群,若对任意的a∈G有a=a^(-1),证明(G,*)是可换群 设G是群,a是G中一个元素.令 H = { x∈G∣ax = xa }. 试证H是G的一个子群.急!对任意x,y属于H,(xy)a=x(ya)=x(ay)=(xa)y=a(xy),xy属于H由ax=xa可推出a(1/x)=(1/x)a (1/x是x的逆),所以H是G的子群 对这个不是很理解 设(G,*)是循环群,a∈G,如果a不是任何一个非平凡子群的元素,证明a是(G,*)的生成元 近世代数问题设G是一个群,H是G的m阶子群,a属于G,证明G中所有形如hah^-1(h属于H)的元素个数整除m 代数结构习题求教:H是G的正规子群,[G:H]=m.证明:对于G的任意元素x,x^m∈H. 设(G,*)是可交换群,a,b属于G,a和b都是2阶元素,证明(G,*)必有4阶子群 这是几道数学题、是近世代数的,一、填空题1、设集合A有一个分类,其中a与b是A的两个分类,如果a≠b,那么a和b交集为( ).2、设群G中元素a的阶为m,如果a的n次方等于e,那么m与n存在整除关系为 设集合G=Q-{1},其中Q是有理数集,定义G上的二元运算*为任意a,b∈G,a*b=a+b-ab,证明(G,*)是群 设G是一个群,证明:如果G/Z(G)是循环群,则G是交换群 设函数f(x)是单调函数,对于任意的x,函数g(x),满足不等式f(x) 集合中的新定义问题?设S是至少含有两个元素的集合,在集合S上定义了一个二元运算“*”(即对于任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).若对于任意的a,b∈